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INTRODUCTION 

The purpose of this paper, is to provide a means of estimating and comparing the wavelength 

conversion efficiency (figure of merit, FOM) of new nonlinear materials knowing only their 
1 28 bandgap. The approach for the estimates is trend analysis of existing data " for the second order 

nonlinear coefficient, %(2)ijk, or dy = %(2)ijk/2, the index of refraction n, and the bandgap E. No 

underlying physical basis for the result will be presented. The result of this trend analysis, in the 

form of plots of x(2) vs E and FOM vs E and the associated fit equations, will be used to estimate 

XC) and the FOM for wavelength conversion efficiency for some new materials. The accuracy goal 

agrees within a factor of 2-5 with the experimental values, which is quite good considering the 

values range over four to seven orders of magnitude. 

In this paper, following the usual conventions, the %<2> values are treated as having constant 

values in the region of high transparency between the bandgap and the onset of multiphonon 

absorption, and the full %(2) values are used, which means the impact of the phase matching angle 

is ignored. The requirement to phase match often reduces significantly the effective x values 

below those of the full values. The distinction between direct, indirect, or pseudodirect bandgaps 

is ignored and the minimum room temperature gap is used in all cases. 

A number of trends are now well known for semiconductors. Representative examples are: a 

decreasing thermal conductivity as the bandgap decreases, an increasing mobility as the bandgap 

decreases, an increasing spin-orbit splitting as the bandgap decreases, a decreasing bandgap as the 

lattice constant increases, an increasing index of refraction as bandgap decreases, an increasing 

dielectric constant as bandgap decreases, and increasing non-linear susceptibilities as the linear ,--"-— —~ 
-~    "".■"■ >mm<i II 11^ 

susceptibilities increase. The last three examples are relevant to the present discussion and will be ST    4 
a  -i 

described in some detail below, followed by some observations related to corresponding ab initio! Q  , Sf 
nn   -       _ 

calculations. ■— 

The nonlinear optical behavior of crystals in response to intense optical beams is understood in 5/ 
,  ___-if C 

/Avail esä/oi» 
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11 28 terms of a nonlinear polarization ' . The polarization tensor P(E) is related to the electric field 

tensor E through Eq (1) or Eq (2), where, x(2)ij = 2 dy, K is the dielectric susceptibility, %^ 

(subscripts are omitted subsequently) and x<3) are the nonlinear susceptibility coefficients. 

P(E) = K(E)*E= K0E + x<y'El + x(3).Es+... (1) 

Pi=K0ikEk + X(2)ijEJ
2+-, (2) 

In Eq (2), the three dimensional tensor is written in the usual "plane" representation. In the 

following discussion, the subscripts will be omitted except where helpful for clarity of meaning. 

All non-centrosymmetric compound semiconductors will have a non-zero %<2> and be optically 

transparent. Generally speaking for infrared applications, all III-V and II-VI compound 

semiconductors and their pseudo-ternary analogs, the I-III-VI2 and II-IV-V2 chalcopyrites with 

bandgaps of the order of 2 eV or less, have large %<2>'s. A number of compounds from these 

families with x(2) vs in the range of 66 pm/V (i.e., AgGaSe2) to the enormous value of 470 pm/V 

(i.e., CdGeAs2) have received serious consideration for infrared applications. 

The usual FOM for wavelength conversion efficiency can be expressed as (x^)2/n3, where % 

is the effective %-value which depends on the specific crystal structure and the direction of the 

incident optical beam on the crystal and n is the index of refraction in the transparent region. For 

the zinc blende or the chalcopyrite semiconductors the appropriate % is %36. It is traditional to 

compare %&> values only and ignore the issue of beam direction in first order comparisons of the 

nonlinear optical properties. In this paper trend analysis of x{2> vs bandgap and FOM vs bandgap is 

used to estimate the size of xp) and the FOM for wavelength conversion efficiency for known and 

unknown materials. 

A trend between index of refraction and bandgap was pointed out by Moss27 in 1950. The 



Moss expression for the index of refraction n, where the constant has been slightly modified by 

Ravindra and Srivastava26, is given as Eq (3), where the energy in this and subsequent equations is 

ineV: 

n = (108/E)"4 (3) 

The data compiled and modeled by Phillips and VanVechten presented a corresponding 

relationship between the dielectric constant £ or linear susceptibility x(I) and energy gap, as pointed 

out by Soref31, as the Moss-like relationships of Eqs (4) and (5). 

112 

e=(a/E) (4) 

or 

7tl) = (b/E)'2 (5) 

2 
where a and b are appropriate constants. Considering that n = e, Eq (4) has the same functional 

form as Eq (3). The physical basis for Eq (4), Eq (5), and by inference Eq (3), is provided within 
29 30 the framework of the Phillips'bond charge model ' . 

Miller32 in 1964 noticed that the %& values available for eleven materials could vary by several 

orders of magnitude from material to material. He found to his surprise that the x<2) is proportional 

to a product of the three linear susceptibilities. This relationship is now known as Miller's 

Empirical Rule and the proportionality constant is known as Miller's 8y. Flytzanis states that, in a 

certain sense, this rule was the first hint that nonlinear susceptibilities could be expressed in terms 

of other macroscopic properties. If the mean value of 5y determined for these 11 materials is used, 

then all of the d values can be calculated to within a factor of two. The rule can also be written in 
31 

terms of indices or dielectric constants. For indices the rule can be written   in rationalized mks 



units: 

X» = 2(8.85 xlÖ12)( (nJ-1) 2)(nJ-l)( %), (6) 

where %(2> is in m/V and n^ and n2a) are the indices respectively at the frequencies co and 2co. 

Miller's original constant value for öy in his units was 0.38 and the specific value for GaAs was 

0.24. Using the presently accepted value of 180 pm/V for %36 gives a value for Miller's delta of 

0.0246 in rationalized mks units, which yields 

X2> =0.436 (nJ-1) 2)(nJ-l), (7) 

where the units of x(2> are pm/V. 

Subsequently, Flytzanis and Ducuing34, in a study of the specific material-to-material variation 

of 8jj within the III-V semiconductor family, found that Miller's delta correlates remarkably well 

with the dipole moment of the cation-anion bond. Ultimately, using the bond charge model, 

Levine35 provided an approach for calculating the value of öy for a given material. Levine's value 

for 8ij used in conjunction with Miller's Empirical Rule overestimates the experimental values by 

20% or less for a large number of semiconductors. This modification based on physical insight 

greatly improved the accuracy of Miller's Empirical Rule. However, it was Miller's Empirical 

Rule that provided the insight for the establishment of the underlying physical basis for nonlinear 

optical susceptibility. 

Ignoring dispersion, Miller's Empirical Rule, as given by Eq 7, reduces approximately, for 

large index materials, for n »1, to: 



tf> =(0.436) nffy. (8) 

Combining Miller's rule, Eq (6), and the Moss relationship, Eq (3), indicates that for x<2)ij 
3/2 

increases rapidily as E decreases, going as (1/E)   . In the same spirit, the FOM also increases 
9/4 

rapidly as E decreases, going as (1/E)   . Tabulations of xp) values versus transparency range 
37 given by Prokhorov , or of the FOM for wavelength conversion versus transparency range given 

38 by Shay and Wemick for representative materials, also suggest the trend that nonlinear properties 

increase rapidly with decreasing bandgap. The prior successes of empirical property trend analysis 

have served as the motivation for the FOM trend analysis to follow. 

The alternate approach of ab initio calculations of the corresponding quantities, particularly for 

even-order susceptibilities like x(2)> is presently not generally feasible. Flytzanis has reviewed 

efforts to produce approximate theoretical scaling laws for nonlinear susceptibilities and Levine et 

al. and Zhong et al. have made "near" ab initio calculations of the nonlinear susceptibilities. 

These two approaches are discussed below. 

Flytzanis has shown that odd order nonlinear susceptibilities, like the linear one can be cast in 

the form of scaling laws, essentially power laws of an effective parameter which turns out to be a 

measure of the valence electron delocalization and can be expressed in terms of measurable 

macroscopic quantities. It is found that for three-dimensional systems the odd order 

susceptibilities scale as: 

(2m-l) 2 (3m-l) 
X       =(P)(1/E      ), (9) 

where P is the average transition-dipole-moment matrix element and m = 0, 1, 2, .... For x 

and x(3) Eq (9) gives 

f]  =P2/E2 (m=l) (10) 

(i) 



and 

f]   =(P2)(1/E). (m = 2) (11) 

Note that the ratio of jc^to %&yields%& =%v/E3. Eq (10) may be compared to Eq (5), implying 

that Pz scales as E   , for %■' scaling as E   , and that x ' scales as in Eq (12) below: 

f}   =(c)(l/E)6J, (12) 

where c is an appropriate constant. These scaling laws were derived in the one-electron approach, 

ignoring electron correlations via a critical point analysis. These scaling laws might become invalid 

as the average atomic number of the compound increases to the point that spin-orbit-splitting is a 

significant portion of the gap. This occurs for very narrow gap materials. 

Sheik-Bahae et al.3 used a two band model to calculate the scaling of %(1) and found that 

empirically an E dependence is successful in predicting the % for a wide variety of 

semiconductors and insulators over four orders of magnitude.  This is a somewhat slower but 
-6.5 

similar dependence to the E    dependence given by Eq (12). 
33 It is not possible   to provide a similar approximate theoretical expression for even-order 

(2) 
susceptibilities such as % because it is sensitive to local properties of the electron density, and 

integration over the entire Brillouin Zone is required. The physical basis is that the simultaneous 

requirement for large charge asymmetry and large charge delocalization are competing processes 

resulting in some cancellation effects. However, the empirical trend for x(2) and the approximate 

theoretical scaling laws for odd order susceptibilities indicate that, generally, susceptibilities are a 

power law function of the bandgap, increasing rapidly as the bandgap decreases. 

The "nearly" ab initio calculations of the nonlinear susceptibilities for some III-V compounds 

and Se have been reported ' . At present ab initio calculations do not accurately predict the 

bandgap, tending to produce a value about 1.0 eV too small and a lattice constant 0.100 to 0.200 

nanometers too small.   Unfortunately, the value of %(2) is extremely sensitive to lattice 



constant/bond length and bandgap . These limitations are overcome by adding a constant self- 

energy correction to the Hamiltonian to fix the bandgap and using the experimental lattice 

parameters. This "nearly" ab irdtio approach then gives good agreement with experimental results 

for compounds of elements in and above Period IV. However, for elements and compounds in 

Period V or greater such as Te, CdGeAs2 , and InSb, this approach does not apply, as once again 

spin-orbit-splitting has not yet been taken into account. The results for the five materials for which 

X(2) was calculated also shows the general trend that %(2) increases rapidly with decreasing 

bandgap. Fitting the data indicates that x   increases as E" and FOM as E . 

Flytzanis33 points out that the searches for scaling laws and empirical trend analysis for 

susceptibilities, as for other physical properties, serves many purposes, fundamental as well as 

practical. They allow the prediction of the properties of new materials by simple inspection, they 

introduce economy in comparing materials, and they help formulate guidelines for the search for 

new materials, as well as provide guidance for the development of theory by singling out dominant 

mechanisms. In the general case, scaling laws and empirical trend analysis are the only tools 

available for guiding new materials development. 

RESULTS AND DISCUSSION 

Using a database compiled from the literature for a number of compounds of interest for 

nonlinear optical applications, a plot of the second order nonlinear coefficient, x(2), versus bandgap 

has been constructed, and is given in Figure 1. A similar plot of the FOM versus bandgap is given 

in Figure 2. Where known or observed, uncertainty for these values was noted; otherwise a 

minimum of ±20% relative error was assumed, a value most likely too small an error for much of 

the data in view of the wide variability observed from the literature where some error ranges 

approach factors of two. In converting from relative to absolute values the value of x^36 =180 

pm/V from reference 14 has been used following general practice. We note that many values 



reported in the literature have been converted using much higher values ranging from 139 to 151, 

which give values larger by 50% to 70%. In Table 1, Soref s x(2) values for IV-IV compounds are 

used. These are calculated values assuming Miller's rule and using 5y for SiC. This approach, in 

view of the saturation shown in Figure 1, may overestimate significantly the %(2)'s of the narrow 

bandgap members of the family such as GeSn. 

The general trend of both %(2) and FOM is to increase rapidly with decreasing bandgap. In 

Table 1 are listed the data (and sources) used in the plots. Examination of the curves shows that a 

single power law expression cannot represent the data well over the total bandgap range. 

Regression fits were computed which relate %&> to bandgap and FOM to bandgap for a single curve 

over the full range of E, and two curves. The least squares fits are listed in Table 2. A power law 

was chosen because it is consistent with the results of the ones discussed in the introduction, 

although x also can be fit reasonably well an e type law (x = 1134e"' ). Clearly, the single 

curve overestimates large band gap compounds, while underestimating small band gap 

compounds. For those materials with gaps from about 0.8 to about 3 eV, the single curve fit 

provides an order of magnitude estimate. The two curves provide better estimates for the ranges 0 

to about 1 eV and 1 to about 8 eV. We note that the Miller's 8 values are rather widespread for this 

set of compounds, covering a range of about a factor of two, and having an average value of about 

0.05 m2/C. 

Calculated values based on Table 2 and actual values are listed in Table 3 for several well 

known materials. Table 3 indicates that predictions are within a factor of two in the IR for both x^ 

and FOM, and over the full range all agree approximately within the goal of a factor of 2-5. Further 

comparisons are presented in Tables 4 and 5. In Table 4, predicted values and actual values for 

families are compared by calculating ratios for three groupings, using the lowest value of the group 

as a reference. The results are presented in columns 5 and 6, and they suggest that the predicted 

values are close to the actual values where known. Again the accuracy is within a factor of two in 

the IR. In Table 5 a similar comparison is made for FOM. The results indicate reasonable 

agreement except for the narrow band, where the predicted value severely underestimates the actual 



value, although the agreement with the relative value is within a factor of two. Also, we note that 

predicted values of FOM may be in error by factors more than two, because x enters FOM as the 

square. The trend, however, is valid for FOM. 

The fits in Table 2 are applied to four promising relatively unknown materials; 1) the recently 

discovered ordered ternary III-V compound GaInP2, predicted by Wei and Zunger for which no 

nonlinear properties are available, 2) the less well known AgGaTe2 whose nonlinear properties 

have not been reported and which is a member of the compound family whose two well known 

members are AgGaS2 and AgGaSe2, 3) several new members of the II-III2-VI4 family, defect or 

pseudo chalcopyrites, which includes the well known mercury thiogallate, HgGa2S4, and 4) TeSe 

solid solution alloys which have not received the consideration they deserve as very high efficiency 

materials. These Equations are also applied to three well known materials, GaAs, ZnGeP2 and 

CdGeAs2 as baseline comparisons. All of these results are presented in Table 5. As a final 

discussion, several additonal subtrends based on families of compounds are discussed. 

Random ternary alloy ni-V semiconductors have received little attention, although their %&>s 

can be very large, because they are isotropic, and, therefore, do not possess birefringence which is 

necessary for conventional wavelength conversion processes. However, in the ordered state it 

would be expected that ternaries like GaInP2 would be birefringent uniaxial crystals. Stenger et 

al.42 have experimentally verified this expectation of adequate birefringence by variable angle 

spectral ellipsometry measurements for CuPt-like ordering in GaInP2- The estimated x(2) from 

Table 4 for ordered GaInP2 is 130 pm/V, a value large in practical terms. This seems to be a very 

reasonable value, since it is somewhat less than the trend value for GaAs of 214 pm/V, as would 

be expected from its slightly larger bandgap, and the trend result for GaAs is in fairly good 

agreement with the literature19 value of 180 pm/V. It would seem that films of ordered GaInP2 

would be exceptional waveguide materials. 

Some years ago, Bell et al.43 investigated the properties of the AgGaTe2 compounds and 

commented that AgGaTe2 had good mechanical properties and should have a sufficiently large 

birefringence to be useful for nonlinear optics, although there had not been any studies of this 



aspect of the AgGaTe2 compounds. Because x(2) data for AgGaTe2 is not available from the 

literature, the estimated value from Table 4 is 233 pm/V. Comparing trend results with literature 

values for AgGaS2 and AgGaSe2 indicates that, for this family, the trend result overestimates the 

literature values but does accurately reflect the relative values for these two materials as shown in 

column VII of Table 4. In Figure (1), the II-VI compounds and their pseudo-ternaries lie generally 

lower while following the same slope which is consistent with the actual materials dependence of 

Miller's 8. Relying on the more reliable relative value would give a %a) of 101 pm/V which exceeds 

the value for AgGaSe2 by 60% and more importandy a factor of 3.5 times greater FOM. This 

material is certainly worth re-exploring. 

Radautsan et al.44 have surveyed a number of the II-III2-VI4 compounds and indicate that then- 

nonlinear properties are interesting. The thiogallates HgGa2S4, HgGa2Se4, HgIn2Se4 are 

compared using Table 2 and the bandgaps reported by Radautsan et al. The trend result of 36.2 

pm/V for x(2) for HgGa2S4 is in reasonable agreement with the literature value11 for x(2) which 

ranges from 53.6 pm/V to 70.4 pm/V. So the trend results listed in Table (3) should be reasonable 

estimates. For HgIn2Se4, the estimate for %w> is an impressive 196 pm/V, its FOM is a factor of 15 

larger than that of HgGaS4! Its range of transparency should be quite large, given its calculated 

range is from 0.86 microns to much greater than 12 microns, the long-wavelength cut-off of 

HgGa2S4. 

Tellurium has the second highest reported %(2) for a semiconductor and it is transparent in the 

infrared. However, in C02 laser doubling experiments it has been found that two photon 

absorption and intraband scattering of free carriers limits its application to low power levels. This 

is a result of its narrow bandgap. This problem could be alleviated by alloying with Se to increase 

the bandgap. Pure tellurium crystals are quite soft and deformation induced defects also limit its 

performance . Alloy hardening may adequately improve its mechanical properties. The optical 

properties of Te crystals alloyed with respectively 2%, 2.7%, and 11% have been reported ' . 

There is evidence that a solid solution exists for all concentrations where the lattice constant 

decreases in a linear fashion as selenium is added to tellurium. The bandgaps in eV and the 

10 



respective short wavelength cut-offs in microns for the 0%, 2.7%, 11%, and 100% cases are 

respectively 0.358/3.46, 0.375/3.3, approximately 0.4/3.1, and 1.7/0.72. Alloying provides a 

method of continuously varying the cut-off from 3.46 to .72 microns. The y^ and the FOM will 

vary with composition as the bandgap varies as indicated by Eq (4) and (5), but this dependence 

may be nonlinear, as pointed out by Stake and Keller48. Thus, a linear interpolation of band gap 

values from pure Te and pure Se based on composition will yield incorrect results. Using the 

bandgap composition results of Stake and Keller, for a 1 eV bandgap/1.24 micron cut-off alloy, 

the composition Te2g6 Se.7i4 is required. Once a bandgap value is estimated, %&) and FOM can be 

read from the plots; in this case, this compound has a %(2) of about 700 pm/V and FOM of about 

3000pm2/V2. 

The intraband scattering mechanism mentioned above which limits the performance of Te will 

be much less severe in the alloys. As the bandgap is widened the valence band splitting is 

significantly smaller in comparison, and this scattering mechanism is much less important. In 

addition, Dubinskaya46 reports an approach which may overcome this limitation. Te and, by 

analogy, these alloys are easily bleached to improve their transparency in the infrared by exposing 

the crystals to weak visible light sources. The impressively large values for the nonlinear 

parameters indicate that a serious exploration of this alloy system is warranted. 

The power law dependencies for FOM and %(2) are summarized in Table 6 and discussed 

below. Empirically, the FOM depends more strongly on E than x(2) does. As a result, reducing the 

bandgap is significantly more beneficial than the %(2) trend alone might indicate. From the fit for 

%(2) in the bandgap range > 1 eV, and from the "nearly" ab initio calculation for the 1.4 - 2.45 eV 

range, the bandgap dependences are similar, as m =2.6 and 3, respectively. For the FOM the 

"nearly" ab initio result and our results give respectively m = 6 and m =4.1 (using our large gap 

value) or m = 0.9 using our small gap value, indicating that the field dependence of FOM is 

overestimated by the calculated results. 

For bandgaps <1 eV, the bandgap dependence for both FOM and %(2) are strikingly lower as 

saturation sets in. A comparison of "nearly" ab initio results for the narrow bandgap materials has 

11 



not been made, because the model does not include spin-orbit-splitting and it is useful only for 

compounds made up of low atomic number atoms4 . The bond charge model, the approximate ab 

initio model, and the "nearly" ab initio model fail to predict the saturation observed for FOM and 

X(2), although Miller's rule does, as shown in Figure 1. However, Miller's rule does poorly in the 

wide bandgap regime, tending to overestimate significantly. At the present time the bandgap 

dependence over the full range is treated successfully only by trend analysis, which covers 

materials with a gap of less than one eV. 

A more careful look at the trends in Fig. (1) indicates that the data can be grouped in a number 

of ways to identify sub-trends. Compounds with Group V or VI anions can be grouped as the 

upper or high bandgap group while oxides and complex structures as the lower or low bandgap 

group. Using these groupings, there are at least two curves present - one for narrow bandgap and 

one for large bandgap. Several compound families show similar slopes when the anion element is 

considered, for example, {ZnS, ZnSe, ZnTe}, {CdS, CdSe, CdTe}, {GaP, GaAs, GaSb}, 

{CuGaS2, CuGaSe2}, {Se, Te} and {AgGaS2, AgGaSe2} have similar slopes. The sulfides and 

the selenides tend to fall below the trend line, for the III-V compounds, in agreement with their 

smaller Millefs 8's. The II-IV-V2 family members, on the other hand, tend to fall above the trend 

line for the III-V compounds, in agreement with their large Miller's 8's. The {CdGeP2, 

CdGeAs2} line has a lower slope than the others, as does {ZnS, CdS, HgS}. The {InP, InAs, 

InSb} trio does not lie on a line, suggesting that the data may be suspect, probably for the InAs, 

because the line for InP and InSb has a slope similar to that for similar groupings. The predicted 

value for In As is about 1650 pm/V ± 500. If the {CdGeP2, CdGeAs2} data is correct, this 

suggests that the x(2) value for ZnGeAs2 should be about 356 pm/V ± 75 based on the direct 

bandgap value of about 1.15 eV. However, it is anticipated that ZnGeAs2 will not possess an 

adequate birefringence, because its tetragonal distortion is zero (i.e., c/a = 2.0). 

12 



CONCLUSIONS 

As a means for quickly estimating the value of a material, these curves offer a simple and direct 

means for classifying nonlinear optical materials. The plots show a strong trend in the data, i.e., 

X(2) increasing rapidly with decreasing bandgap. The FOM depends more strongly on E than %(2) 

(2) does, and, as a result, reducing the bandgap os significantly more beneficial than the % trend 

alone might indicate. The bandgap dependence of the "nearly" ab initio and that of our empirical 

result for the bandgap near and above one eV are identical. A saturation of x at band gaps below 

one eV is observed in our empirical trend, although the various models described fail to predict this 

behavior, and trend analysis is superior to Miller's rule for large bandgaps. This relationship alone 

is of value in estimating x(2) for a compound based on band gap value. Thus, a non- 

centrosymmetric compound can be evaluated in broad terms as to its utility as a x(2) nonlinear 

optical material. Trend analysis indicates that films of ordered GaInP2 would be exceptional as E- 

O waveguide materials, that the FOM of AgGaTe2 is an impressive factor of 3.5 times greater than 

that of AgGaSe2 and crystals of HgGa2Se4, and that TexSe(i-x) alloys are of distinct interest, 

because they are very efficient wavelength conversion materials for infrared application. 
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Table 1. Data used to plot x(2) against band gap. Sources of the data are given in 

the references listed at the bottom of the table. Sy = Miller's delta; Index = index 

of refraction. Units are Gap in eV, % in pm/V, FOM in (pm/V)2 and Sy in m2 /C. 

Compound RefNo. Gap X™ FOM Index Sii 

1 InSb a,b 0.23 3268.0 43322.43 3.95 0.056 

2 Te c 0.33 1300.0 3834.71 4.794 0.007 

3 GeSn a,p,q 0.36 2308.0 14614.17 4.5 0.02 

4 InAs a,d 0.36 838.0 4388.84 3.42 0.033 

5 CdGeAs2 c,e,f 0.57 820.0 3821.59 3.5 0.029 

6 GaSb d 0.72 1256.0 7785.99 3.7 0.028 

7 SiSn a,p,q 0.84 1010.0 4138.01 3.95 0.02 

8 SiGe a,p,q 0.9 674.0 2224.02 3.71 0.02 

9 SnC a,p,q 1.2 556.0 1656.46 3.6 0.02 

10 AgInSe2 c,e,g,h 1.2 100.0 135.87 2.6 0.031 

11 InSe a 1.25 200.0 131.19 4.2 - 

12 InP d 1.35 287.0 505.86 3.4 0.008 

13 GaAs b,d 1.4 270.0 521.22 3.27 0.011 

14 CdTe a,c,i 1.5 336.0 1551.50 2.63 0.077 

15 CuInS2 c,e,j,k 1.53 19.2 5.43 2.6 0.007 

16 CuGaSe2 c,e,h,j,k 1.7 70.0 60.87 2.7 0.020 

17 Se b,c 1.7 159.2 344.36 2.64 0.042 

18 CdGeP2 c,e,f 1.72 320.0 788.62 3.2 0.025 

19 ZnSiAs2 c,e,f 1.74 180.0 244.89 3.2 0.016 

20 AgGaSe2 c,e,g,h,k 1.8 95.0 126.90 2.6 0.030 

21 CdSe c 1.8 104.0 183.87 2.5 0.047 

22 Ag3SbS3 c 1.93 28.0 9.53 2.7 0.006 

23 Ag3AsS3 a 2 50.0 31.75 2.7 0.012 
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24 GaSe c 2.021 128.0 186.59 2.8 0.029 

25 ZnGeP2 c,e,f 2.05 150.0 185.21 3.1 0.020 

26 HgS b 2.1 100.0 142.24 2.6 0.029 

27 GeC a,p,q 2.1 76.0 75.02 2.68 0.02 

28 AgAsS2 a 2.14 50.0 40.00 2.5 0.022 

29 b-SiC a,p,q 2.26 60.0 51.80 2.59 0.005 

30 GaP c,d,m 2.3 200.0 335.67 3.1 0.020 

31 ZnTe a,c,i 2.3 184.4 431.89 2.7 0.043 

32 CuGaS2 c,e,g, 

h,j,k 

2.43 22.0 7.93 2.5 0.011 

33 CdS c 2.485 88.0 181.82 2.2 0.071 

34 GaS a 2.5 279.0 988.68 2.7 - 

35 map 1 2.6 12.6 11.76 1.5 - 

36 AgGaS2 c,g,h,k 2.638 28.0 14.18 2.4 0.022 

37 ZnSe c,m 2.7 156.8 444.63 2.4 0.077 

38 Agl c 2.8 20.0 5.50 2.6 0.021 

39 CuBr a 2.91 16.0 8.00 2.0 0.033 

40 Cul a 2.95 16.0 5.26 2.3 0.017 

41 pom 1 3 6.0 2.20 1.6 - 

42 CdGa2S4 a 3.05 50.0 51.37 2.3 0.030 

43 CuCl a 3.17 14.0 7.14 1.9 0.043 

44 ZnO a,b,c 3.3 3.6 0.44 2.0 0.008 

45 ZnS c 3.9 61.2 76.96 2.3 0.066 

46 LiI03 b 4 11.1 2.67 2.3 - 

47 LiNb03 b 4 10.9 4.40 1.9 0.004 

48 urea 1 5.9 2.0 0.24 1.6 - 

49 SiC n 6 17.2 
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50 A1N a 6.2 7.7 1.85 2.0 - 

51 BBO 1 6.3 1.2 0.09 1.6 - 

52 KDP o 7 0.9 0.06 1.5 0.030 

53 Si02 b 8.4 0.8 0.04 1.5 0.015 
c 

All x(2) and Miller 5 data, except IV-IV compounds, are from the CRC Handook on Laser Science 

and Technology, Vol. Ill, Ed. Martin J. Weber, CRC Press, Boca Raton, FL, 1986. 

a. Editors: O. Madelung and M. Schulz, Landolt-Bornstein: Numerical Data and Functional 

Relationships in Science and Technology; Group III: Crystal and Solid State Physics: 

Semiconductors, Volume 22, subvol. a, Springer-Verlag, New York, 1987. 

b. R. C. Miller and W. A. Nordland, Phys. Rev. B 2, 4896 (1970). 

c. V.G. Dmitriev, G.G. Gurzadyan, and D.N. Nikogosyan, Handbook of Nonlinear Optical 

Crystals, Springer Series in Optical Sciences, Vol. 64, Springer-Verlag Berlin Heidelberg, 1991. 

d. Lockheed Sanders-Laser & Electro-optics, Technical Data Sheet (Zinc Germanium Phosphide), 

Nov 1, 1993. 

e. M. Mondal, K. P. Ghatak, and A. K. Das, Acta Physica Hungarica 65, 43 (1989). 

f. H. Hahn and B. Wellmann, Naturwissenschaften 54,42 (1967). 

g. H. Y. Ueng, and H. L. Hwang , Mat. Sei. and Eng. B12, 261 (1992). 

h. M. Mondal, S. Banik, and K. P. Ghatak, /. Low Temp. Phys. 74, 423 (1989). 

i. N. M. Ravindra and V. K. Srivastava, Infrared Phys. 19, 603 (1979). 

j. J. E. Jaffe and A. Zunger, Phys. Rev. B 29, 1882 (1984). 

k. J. L. Zyskind and A. Srivastava, J. Crys. Growth 81, 530 (1987). 

1. B. R. Pamplin, T. Kiyosawa, and K. Masumoto,  Prog. Crystal. Growth Charact. 1, 331 

(1979). 

m. N. M. Ravindra and V. K. Srivastava, Infrared Phys. 19, 605 (1979). 
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n. Eigene R. Nichols, John C. Corbin Jr., Vincent L. Donlan, Technical Report AFAL-TR-74- 

161, pp 61-63, July 1974. Available from NTIS. 

o. P. Villars and L. D. Calvert, Pearson's Handbook of Crystallographic Data for Intermetallic 

Phases; Vols. I, II, III, American Society for Metals, Metals Park, Ohio 44073, 1985 (first 

printing). 

p. R. Soref, Appl. Opt. 31, 4627 (1992). 

q. R. Soref, /. Appl. Phys. 72, 626 (1992). 
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Table 2. Summary of Numerical Fit Equations for %m (pm/V) and for figure of 

merit (FOM) (pm/V)2 for E = 0-8 eV (full gap range), 0-1 eV (narrow gap range), 

and 1-8 eV (wide gap range). 

Full Gap Range: %(2)   = 291E"1-92    correlation coef = 0.9 

Narrow Gap Range:    %(2)   = 663E--89      correlation coef = .88 

Wide Gap Range:        x(2)   = 510E*2-6      correlation coef. = 0.78 

Full Gap Range: FOM = 666E-30    correlation coef. = 0.86 

Narrow Gap Range:    FOM = 2324E'1-4 correlation coef. = 0.85 

Wide Gap Range:        FOM = 1760E"4-1 correlation coef. = 0.76 
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Table 3. Predicted x(2) (pm/V) and FOM (pm/V)2 values compared with actual 

values for the three line fits for compounds representative of narrow, mid, and 

wide energy gap values. 

„(2). 

E Full Narrow Wide Actual 

0.23 4.91E+03 2.45E+03 2.26E+04 3.27E+03 

1.4 1.52E+02 4.91E+02 2.14E+02 1.80E+02 

7.0 6.88E+00 1.17E+02 3.37E+00 1.00E+00 

Compound 

InSb (narrow) 

GaAs (mid) 

KDP (wide) 

FOM: 

E Full Narrow Wide Actual Compound 

0.23    5.61E+04 1.84E+04 7.65E+05 4.33E+04      InSb (narrow) 

1.4      2.41E+02 1.45E+03 4.37E+02 2.32E+02      GaAs (mid) 

7.0      1.88E+00 1.51E+02 5.63E-01 1.00E-01       KDP  (wide) 
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Table 4. Comparison of the calculated and literature values of X(2>.   Calculated 

values from equations in Table 2. 

Compound E 
TeV> 

X(2)-Est. X(2)-Exp** 
(vm/V) 

Rel. x 
Calculated 

2) 

Exn 
Estimated/ 
Exp Value 

GalnP2 1 .7 1 30 

GaAs 1 .4 21 4 180 - - 1.19 

AgGaS2 2.73 38.3 28 1.00 1.00 1 .37 

AgGaSe2 1 .83 1 07 9 5 2.79 3.39 1 .13 

AgGaTe2 1 .356 233 (170)* 6.08 - - 

HgGa2S4 2.79 36.2 53.6,     70.4 1.00 - 0.56,0.42 

HgGa2Se4 2.1 75.3 - 2.08 - - 

Hgln2Se4 1 .45 1 96 - 5.41 - - 

Se 1 .7 1 30 1 59 1.00 1.00 0.82 

»e.286 Se-714 1 51 0 (624)* 3.92 - - 

Te 0.33 1780 1300 13.69 8.18 1.37 

ZnGeP2 2 85.4 1 50 1.00 1.00 0.57 

CdGeAso 0.57 1090 820 12.76 5.47 1 .33 

♦♦Reference 11 

♦Calculated using ratio, e.g.,  233/38.3  =  6.0$;  21 l*6.08  =  170. 
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Table 5. Comparison of calculated and literature values for the Figure of Merit. 

Calculated values from equations in Table 2. 

Compound E FOM-Calc FOM-Exp Relative  FOM                Estimated/ 
(eY) rpm/v>2_ -4*m/Y)2. Calculated F.xp.               Exn  Value 

GalnP2 1 .7 1 96 - - - 

GaAs 1 .4 437 232 - 1.88 

AgGaSz 2.73 27.6 23.4 1.00 1                  1.18 

AgGaSe2 1.83 1 44 1 27 5.22 5.43          1.13 

AgGaTe2 1.356 498 (422)* 18.04 - 

HgGa2S4 2.79 25.2 - 1.00 - 

HgGa2Se4 2.1 81.7 - 3.24 - 

Hgln2Se4 1 .45 378 - 15.00 - 

Se 1 .7 1 96 51 1 1.00 1                  0.38 

Te.286 Se.714 1 1760 (4589)* 8.98 - 

Te 0.33 11000 10,048 56.12 19.66       1.09 

ZnGeP2 2 99.9 1 85 1.00 1                  0.54 

CdGeAs? 0.57 5120 3822 51.25 20.66           1.3 4 

'"Calculated using ratio 

24 



Table 6. Power-law scaling summary, where m is the bandgap power dependence. 

-EL 

FOM ^£21 Rand?aD Ranee (eV) Reference 

3.0 1.9 8 - 0 this work 

4.1 2.6 8 - 1 this work 

1.4 0.9 1 - 0 this work 

<? 3 1.4 - 2.45 "nearly" ab initio. refs. 37. 38 
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Figure Captions: 

Figure 1. Plot of the second order nonlinear coefficient, %v\ versus bandgap for a number of 

chalcopyrites and selected other types of compounds. See Table 1 for specific data. The "nearly" 

ab initio results (dashed line) and values calculated using Miller's empirical rule, as given by 

equation 7, are plotted for comparison, open boxes: narrow gap; open circles: wide gap; x: Miller's 

rule; filled diamonds: ab initio calculated values; the solid lines are fits for each range; the dotted 

line is the fit for ab initio values. 

Figure 2. Plot of the figure of merit (FOM) versus bandgap for a number of chalcopyrites and 

selected other types of compounds. The "nearly" ab initio result (dashed line) is shown for 

comparison. Open boxes: narrow gap; open circles: wide gap; filled diamonds: ab initio values; 

solid lines: fits for two ranges; dotted line: fit for ab initio values. 

26 



E 
a 

CM 

X 

1000 

Energy Gap (eV) 

27 



10000 

> 

E a 
100   r 

0.01 

l     r T 1 1 1—T [—; 

V3   o 
[ >°.     go 

I o\  0    ° 

 ~ .....$§v  

- °       %. ° 
: o            %. 

 O ♦"" : 
O         : 

O ■ 

0.1 

Energy Gap (eV) 

1 0 

28 


